Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 97(2): 813-828, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160361

RESUMO

BACKGROUND: The pathophysiology of Alzheimer's disease (AD) involves the interplay of three different processes: pyroptosis, apoptosis, and necroptosis. OBJECTIVE: To explore role of PANoptosis, a novel pro-inflammatory programmed cell death pathway, in AD patients. METHODS: We performed a consensus clustering analysis to identify distinct transcriptional profiles in the samples using the R package "ConsensusClusterPlus". The PANoptosis key genes were obtained by crossing the WGCNA brown module and differentially expressed PANoptosis genes. We accomplished regression analyses using the LASSO-Cox method, combined with pathological status and gene expression data. At the same time, we also constructed PANscore system. The expression of PANoptosis hub genes were validated by qRT-PCR in AD transgenic mice. RESULTS: Our study utilized tissue expression profile data from AD patients to construct three distinct PANoptosis patterns, each with unique molecular and clinical characteristics. We have created a risk scoring system called PANscore, which can analyze patterns specific for each AD patient. Additionally, we observed significantly lower levels of follicular helper T (Tfh) cells in the high PANscore and AD patients. Further analysis revealed a significant negative correlation of Tfh with GSDMD and MLKL. CONCLUSIONS: These findings provide a roadmap for personalized patient stratification, enabling clinicians to develop personalized treatment plans for AD patients and advance the field of precision medicine.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Humanos , Doença de Alzheimer/genética , Apoptose , Análise por Conglomerados , Camundongos Transgênicos , Medicina de Precisão
2.
Front Neurol ; 13: 1064639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36776574

RESUMO

Alzheimer's disease (AD) is a chronic neurodegenerative disease, and its underlying genes and treatments are unclear. Abnormalities in copper metabolism can prevent the clearance of ß-amyloid peptides and promote the progression of AD pathogenesis. Therefore, the present study used a bioinformatics approach to perform an integrated analysis of the hub gene based on cuproptosis that can influence the diagnosis and treatment of AD. The gene expression profiles were obtained from the Gene Expression Omnibus database, including non-demented (ND) and AD samples. A total of 2,977 cuproptosis genes were retrieved from published articles. The seven hub genes associated with cuproptosis and AD were obtained from the differentially expressed genes and WGCNA in brain tissue from GSE33000. The GO analysis demonstrated that these genes were involved in phosphoribosyl pyrophosphate, lipid, and glucose metabolism. By stepwise regression and logistic regression analysis, we screened four of the seven cuproptosis genes to construct a diagnostic model for AD, which was validated by GES15222, GS48350, and GSE5281. In addition, immune cell infiltration of samples was investigated for correlation with these hub genes. We identified six drugs targeting these seven cuproptosis genes in DrugBank. Hence, these cuproptosis gene signatures may be an important prognostic indicator for AD and may offer new insights into treatment options.

3.
Front Neurol ; 10: 873, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31456739

RESUMO

Sleep-wake development in postnatal rodent life could reflect the brain maturational stages. As the altricial rodents, rats are born in a very undeveloped state. Continuous sleep recording is necessary to study the sleep-wake cycle profiles. However, it is difficult to realize in infant rats since they rely on periodic feeding before weaning and constant warming and appropriate EEG electrodes. We developed a new approach including two types of EEG electrodes and milk-feeding system and temperature-controlled incubator to make continuously polysomnographic (PSG) recording possible. The results showed that there was no evident difference in weight gaining and behaviors between pups fed through the milk-feeding system and warmed with temperature-controlled incubator and those kept with their dam. Evolutional profiles of EEG and electromyogram (EMG) activities across sleep-wake states were achieved perfectly during dark and light period from postnatal day (P) 11 to P75 rats. The ontogenetic features of sleep-wake states displayed that the proportion of rapid eye movement (REM) was 57.0 ± 2.4% and 59.7 ± 1.7% and non-REM (NREM) sleep was 5.2 ± 0.8% and 4.9 ± 0.5% respectively, in dark and light phase at P11, and then REM sleep progressively decreased and NREM sleep increased with age. At P75, REM sleep in dark and light phase respectively, reduced to 6.3 ± 0.6% and 6.9 ± 0.5%, while NREM correspondingly increased to 37.5 ± 2.1% and 58.4 ± 1.7%. Wakefulness from P11 to P75 in dark phase increased from 37.8 ± 2.2% to 56.2 ± 2.6%, but the change in light phase was not obvious. P20 pups began to sleep more in light phase than in dark phase. The episode number of vigilance states progressively decreased with age, while the mean duration of that significantly increased. EEG power spectra in 0.5-4 Hz increased with age accompanied with prolonged duration of cortical slow wave activity. Results also indicated that the dramatic changes of sleep-wake cycle mainly occurred in the first month after birth. The novel approaches used in our study are reliable and valid for continuous PSG recording for infant rats and unravel the ontogenetic features of sleep-wake cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...